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Abstract: In this paper, we investigate the existence of positive solutions for higher-order fractional differential
equations with p-Laplacian operator and nonlocal boundary conditions. By means of the properties of the corre-
sponding Green function together with monotone iterative technique, we obtain not only the existence of positive
solutions for the problems, but also establish iterative schemes for approximating the solutions. The nonlinearity
permits singularities at t = 0 and/or t = 1.
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1 Introduction
The purpose of this paper is to consider the existence
of positive solutions for the following singular frac-
tional differential equations involving p-Laplacian op-
erator (PFDE, for short) and integral conditions
Dβ

0+(ϕp(D
α
0+u(t))) + a(t)f(t, u(t)) = 0, t ∈ J,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dα
0+u(0) = 0, u(i)(1) = λ

∫ η

0
h(t)u(t)dt,

(1)

where Dα
0+, D

β
0+ are standard Riemann-Liouville

derivative, ϕp(s) = |s|p−2s, p > 1, a ∈ C((0, 1),
R+), J = (0, 1), f ∈ C((0, 1) × R+, R+), f(t, u)
may be singular at t = 0 and/or t = 1, R+ =
[0,+∞), h ∈ L1[0, 1] is nonnegative and h(t) may
be singular at t = 0 and t = 1, i ∈ [1, n − 2] is a
fixed integer, n − 1 < α ≤ n, n ≥ 3, 0 < β ≤ 1
0 < η ≤ 1, 0 ≤ λ

∫ η
0 h(t)tα−1dt < ∆, here

∆ = (α− 1)(α− 2) · · · (α− i).
Due to both by the intensive development of the

theory of fractional calculus itself and by the wide ap-
plications such as in control, porous media, aerody-
namics, electrodynamics of complex medium, poly-
mer rheology, electromagnetic, and so on, fractional
differential equations have attracted more and more
researchers’s much attention in recent years. We refer
the readers to [1-3] for an extensive collection of such
results.

In [4-12], by means of the fixed point index the-
ory, fixed point theory together with the relevant re-

sults on u0 bounded operator and lattice structure, the
authors investigated the existence and multiplicity of
positive and nontrivial solutions for fractional differ-
ential equation

Dα
0+u(t) + a(t)f(t, u(t)) = 0, 0 < t < 1 (A)

subject to different boundary conditions. A natural
question is “How can we find the solutions when they
are known to exist?”. There are few results on the
computation of positive solutions for fractional differ-
ential equations at present, see [8, 9, 12-15]. In [16],
using the fixed point index theorem in cones, under
some weak conditions concerning the first eigenvalue
corresponding to the relevant linear operator, the au-
thor obtained the existence and multiplicity of positive
solutions for some singular higher-order fractional d-
ifferential equations. Motivated by above papers, the
aim of this paper is to give the iterative procedure of
positive solutions for BVP (1).

This paper has the following three new features.
First, compared with [4-11], the boundary conditions
contain the i-th order of the unknown function and a
parameter λ. Particularly, a Lebesgue integrable func-
tion h is involved in the boundary condition. Second,
compared with [16], p-Laplacian operator is involved
in differential operator. This means that the problems
discussed in this paper have more general form. Fi-
nally, we obtain not only the existence of positive so-
lutions for the problems, but also establish iterative
schemes for approximating the solutions. The itera-
tive sequences begin with simple functions which is
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convenient in applications. Obviously, it is possible to
replace the Riemann integrals in the boundary condi-
tions by Riemann-Stieltjes integrals with minor mod-
ifications.

The rest of this paper is organized as follows. In
Section 2, we give some preliminaries and lemmas.
The main result is formulated in section 3 and an ex-
ample is given in section 4 to illustrate how to use the
main result.

2 Preliminaries and several lemmas
Let E = C[0, 1], ‖u‖ = max0≤t≤1 |u(t)|, then (E, ‖ ·
‖) is a Banach space. For the reader’s convenience, we
present some necessary definitions and lemmas from
fractional calculus theory which can be found in the
recent literature, see [1-3].

Definition 1 The Riemann-Liouville fractional inte-
gral of order α > 0 of a function y : (0,∞) → R
is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds

provided the right-hand side is pointwise defined on
(0,∞).

Definition 2 The Riemann-Liouville fractional
derivative of order α > 0 of a continuous function
y : (0,∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)

( d

dt

)n ∫ t

0

y(s)

(t− s)α−n+1
ds

where n = [α] + 1, [α] denotes the integer part of the
number α, provided that the right-hand side is point-
wise defined on (0,∞).

Now, we consider the following fractional differ-
ential equation

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(i)(1) = λ

∫ η

0
h(t)u(t)dt.

(2)

Lemma 3 [16] Assume that λ
∫ η
0 h(t)tα−1dt 6= ∆.

Then for any y ∈ L1[0, 1], the unique solution of the
boundary value problems (2) can be expressed in the
form

u(t) =

∫ 1

0
G(t, s)y(s)ds, t ∈ [0, 1],

where

G(t, s) = G1(t, s) +G2(t, s), (3)

G1(t, s) =



tα−1(1− s)α−1−i − (t− s)α−1

Γ(α)
,

0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−1−i

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
λtα−1

∆− λ
∫ η

0 h(t)tα−1dt

∫ η

0
h(t)G1(t, s)dt.

Here, G(t, s) is called the Green function of BVP (2).
Obviously, G(t, s) is continuous on [0, 1]× [0, 1].

Lemma 4 [16] If 0 ≤ λ
∫ η

0 h(t)tα−1dt < ∆, then
the function G(t, s) defined by (3) satisfies
(a1) G(t, s) ≥ m1t

α−1s(1− s)α−1−i,∀ t, s ∈ [0, 1];
(a2) G(t, s) ≤M1t

α−2s(1− s)α−1−i,∀ t, s ∈ [0, 1];
(a3) G(t, s) ≤M1t

α−1(1− s)α−1−i, ∀ t, s ∈ [0, 1];
(a4) G(t, s) > 0,∀ t, s ∈ (0, 1);

where m1 = 1
Γ(α)

(
1 + λ

∆−λ
∫ η

0
h(t)tα−1dt∫ η

0 h(t)tα−1dt
)
, M1 = n

Γ(α)

(
1 + λ

∆−λ
∫ η

0
h(t)tα−1dt∫ η

0 h(t)tα−2dt
)
.

Let q > 1 satisfy 1
p + 1

q = 1. Then, ϕ−1
p (s) =

ϕq(s). To study the PFDE (1), we first consider the
associated linear PFDE
Dβ

0+(ϕp(D
α
0+u(t))) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dα
0+u(0) = 0, u(i)(1) = λ

∫ η

0
h(t)u(t)dt,

(4)

for y ∈ L1[0, 1] and h ≥ 0.

Lemma 5 The unique solution for the associated lin-
ear PFDE (4) can be written by

u(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1y(τ)dτ

)
ds.

(5)

Proof. Let w = Dα
0+u, v = ϕp(w). Then, the initial

value problem{
Dβ

0+v(t) + y(t) = 0, t ∈ (0, 1),
v(0) = 0

(6)

has the solution v(t) = c1t
β−1 − Iβy(t), t ∈ [0, 1].

Noticing that v(0) = 0, 0 < β ≤ 1, we have that
c1 = 0. As a consequence,

v(t) = −Iβy(t), t ∈ [0, 1]. (7)
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Considering that Dα
0+u = w,w = ϕ−1

p (v), we have
from (7) that


Dα

0+u(t) = ϕ−1
p (−Iβ(y(t))), 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(i)(1) = λ

∫ η

0
h(t)u(t)dt.

(8)

By Lemma 3, the solution of (8) can be expressed by
(5).

We list below assumptions used in this paper for
convenience.

(H1) h ∈ L1[0, 1] is nonnegative;
(H2) f(t, 0) 6≡ 0 on [0, 1], f : (0, 1)×R+ → R+

is continuous and nondecreasing on x, and there exists
constant r > 0 such that, for any t ∈ (0, 1), u ∈ R+,

f(t, cu) ≥ crf(t, u), ∀ 0 < c ≤ 1; (9)

(H3) a : (0, 1) → R+ is continuous,
a(t) 6≡ 0 with 0 <

∫ 1
0 (1 − s)α−1−iϕ−1

p

( ∫ s
0 (s −

τ)β−1f(τ, 1)dτ
)
a(s)ds < +∞.

Remark 6 If c ≥ 1, then it is not difficulty to see that
(9) is equivalent to

f(t, cu) ≤ crf(t, u), ∀ c ≥ 1. (10)

Define a subset P in E as follows

P = {u ∈ C([0, 1], R+) : there exist two
positive numbers lu < 1 < Lu such that
lut

α−1 ≤ u(t) ≤ Lutα−1, t ∈ [0, 1]}.
(11)

Clearly, P is nonempty since tα−1 ∈ P.
Now define an operator A as follows:

(Au)(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)ϕ−1

p

( ∫ s

0

(s− τ)β−1f(τ, u(τ))dτ
)
ds,

t ∈ [0, 1].

(12)

Lemma 7 Suppose that (H1) − (H3) hold. Then A :
P → P is completely continuous and nondecreasing.

Proof. For any u ∈ P , there exist two positive num-
bers 0 < lu < 1 < Lu such that

lut
α−1 ≤ u(t) ≤ Lutα−1, t ∈ [0, 1]. (13)

Thus, we have from Lemma 4, (9), (10), (H2), (H3)
that

(Au)(t)

=
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, u(τ))dτ

)
ds

≤
( 1

Γ(β)

)q−1
M1t

α−1
∫ 1

0
(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, Luτ

α−1)dτ
)
ds

≤
( 1

Γ(β)

)q−1
M1t

α−1
∫ 1

0
(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, Lu)dτ

)
ds

≤
( 1

Γ(β)

)q−1
M1t

α−1
∫ 1

0
(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, 1)Lrudτ

)
ds

=
( 1

Γ(β)

)q−1
M1L

r(q−1)
u

∫ 1

0
(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, 1)dτ

)
ds · tα−1

< +∞,

(14)

(Au)(t)

=
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, u(τ))dτ

)
ds

≥
( 1

Γ(β)

)q−1
m1t

α−1
∫ 1

0
s(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, luτ

α−1)dτ
)
ds

≥
( 1

Γ(β)

)q−1
m1t

α−1
∫ 1

0
s(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1lruτ

r(α−1)f(τ, 1)dτ
)
ds

=
( 1

Γ(β)

)q−1
m1l

r(q−1)
u

∫ 1

0
s(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1τ r(α−1)f(τ, 1)dτ

)
ds · tα−1

(15)

which means thatA is well defined, uniformly bound-
ed and A(P ) ⊂ P . By standard argument, according
to the Lebesgue dominated convergence theorem and
the Arzela-Ascoli theorem, it is not difficult to see that
A is completely continuous. Noticing the monotonic-
ity of f on x, we know that A is nondecreasing.

3 Main result
For notational convenience, we denote

Λ =
( 1

βΓ(β)

)q−1
M1

∫ 1

0
(1− s)α−1−isβ(q−1)ds. (16)
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Theorem 8 Suppose that conditions (H1) − (H3)
hold. In addition, if there exists a > 0, such that

f(t, u) ≤ ϕp
( a

Λ

)
, (t, u) ∈ [0, 1]× [0, a]. (17)

Then the BVP (1) has two positive solutions u∗ and
u∗; and there exist two positive numbers li < Li (i =
1, 2) such that

l1t
α−1 ≤ u∗(t) ≤ L1t

α−1,
l2t

α−1 ≤ u∗(t) ≤ L2t
α−1, t ∈ [0, 1].

(18)

Moreover, for initial values u0 = 0, v0 = atα−1,
monotone sequences {un}∞n=1 and {vn}∞n=1 satisfy
limn→∞ un = u∗, limn→∞ vn = u∗, where un+1 =
Aun, vn+1 = Avn, n = 0, 1, 2, · · · .

Proof. Let Pa = {u ∈ P : ‖u‖ ≤ a}. For u ∈ Pa,
we have 0 ≤ u(s) ≤ ‖u‖ ≤ a, s ∈ [0, 1]. Thus, for
t ∈ [0, 1], it follows from Lemma 4, (16) and (17) that

(Au)(t)

=
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, u(τ))dτ

)
ds

≤
( 1

Γ(β)

)q−1
M1t

α−1
∫ 1

0
(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1dτ · ϕp

( a
Λ

))
ds

=
( 1

Γ(β)

)q−1
M1

∫ 1

0
(1− s)α−1−i

·ϕ−1
p

( 1

β
sβ
)
ds · a

Λ

=
( 1

βΓ(β)

)q−1
M1

∫ 1

0
(1− s)α−1−i

sβ(q−1)ds · a
Λ

= a,

(19)

which implies that ‖Au‖ ≤ a, i.e., A(Pa) ⊂ Pa.
Let u0(t) = 0, t ∈ [0, 1]. Similar to (19), by (17)

we get that u1 = Au0 ∈ Pa. Denote

un+1 = Aun = An+1u0, n = 1, 2, · · · .

It follows from A(Pa) ⊂ Pa that un ∈ Pa (n =
1, 2, · · ·). By Lemma 7, we know that {un} is a se-
quentially compact set.

Since u1 = Au0 = A0 ∈ Pa, we have

u1(t) = (Au0)(t) = (A0)(t) ≥ 0 = u0(t), t ∈ [0, 1].

By induction, we get

un+1(t) ≥ un(t), n = 1, 2, · · · .

Consequently, there exists u∗ ∈ Pa such that un →
u∗. Let n → ∞, by the continuity of A and un+1 =
Aun, we know that Au∗ = u∗. This is to say that
u∗ ≥ 0 is a fixed point of A, i.e., u∗ is a nonnegative
solution for BVP (1). By (H2), it is not difficult to see
that 0 is not the solution for BVP (1). Thus, u∗ is a
positive solution for BVP (1).

Let v0(t) = atα−1, t ∈ [0, 1], then v0 ∈ Pa. It
follows from A(Pa) ⊂ Pa that v1 ∈ Pa. Denote

vn+1 = Avn = An+1v0, n = 1, 2, · · · .

Similarly, we get that

vn ∈ Pa, n = 0, 1, 2, · · · .

On the other hand, we have

v1(t) = (Av0)(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, v0(τ))dτ

)
ds

≤
( 1

Γ(β)

)q−1
M1t

α−1
∫ 1

0
(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1dτ · ϕp

( a
Λ

))
ds

≤
( 1

βΓ(β)

)q−1
M1t

α−1
∫ 1

0
(1− s)α−1−i

·sβ(q−1)ds · a
Λ

= atα−1 = v0(t).

By Lemma 7, we know that v2 = Av1 ≤ Av0 = v1.
By induction, we get that

vn+1 ≤ vn, n = 0, 1, 2, · · · .

Consequently, there exists u∗ ∈ Pa such that vn →
u∗. Let n → ∞, by the continuity of A and vn+1 =
Avn, we know that Au∗ = u∗. This is to say that
u∗ ≥ 0 is a fixed point of A, i.e., u∗ is a nonneg-
ative solution for BVP (1). Moreover, considering
that the zero function is not a solution of the prob-
lem, we have that u∗ is a positive solution for BVP
(1). Since u∗, u∗ ∈ Pa, there exist positive numbers
li < Li (i = 1, 2) such that (18) holds.

Remark 9 The iterative sequences in Theorem 8 be-
gin with simple functions which is significant for com-
putational purpose.
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4 An example

Consider the following singular fractional differential
equations
D

1
4
0+(ϕ3(D

5
2
0+u(t))) + 1√

1−tu
3
2 = 0, 0 < t < 1,

u(0) = u′(0) = 0, D
5
2
0+u(0) = 0,

u′(1) =
2

3

∫ 3
4

0

1√
t
u(t)dt.

(20)

Let α = 5
2 , β = 1

4 , p = 3, q = 3
2 , λ = 2

3 , η = 3
4 , i =

1, n = 3, a(t) = 1√
1−t , h(t) = 1√

t
, f(t, u) = u

3
2 ,

then ∆ = 3
2 , 0 < λ

∫ η
0 h(t)tα−1dt = 3

16 < ∆. Clear-
ly, (H1), (H2) hold for h(t) = 1√

t
, r = 3

2 . On the
other hand, we have

0 <

∫ 1

0
(1− s)α−1−iϕ−1

p

( ∫ s

0
(s− τ)β−1

f(τ, 1)dτ
)
a(s)ds

≤
∫ 1

0
ϕ−1
p

( 1

β
sβ
)
ds < ϕ−1

p

( 1

β

)
< +∞

which implies that (H3) also holds. By simple com-
putation, we get

M1 =
n

Γ(α)

(
1 +

λ

∆− λ
∫ η

0 h(t)tα−1dt

∫ η

0
h(t)tα−2dt

)
≈ 3.1166,

Λ =
( 4

Γ(1
4)

) 1
2×3.1166×

( ∫ 1

0
(1−s)

1
2 s

1
8 ds

)
≈ 1.8752.

Take a = 103, then f(t, u) = u
3
2 ≤ (103)

3
2 =

3.1623 × 104 < 2.8438 × 105 = ϕ3

(
103

1.8752

)
. Thus,

(17) holds. It follows from Theorem 8 that BVP
(20) has the positive minimal and maximal solution-
s u∗ and u∗; and there exist some positive numbers
li < Li (i = 1, 2) such that (18) holds.
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